47 research outputs found

    Comparison of distortion product otoacoustic emission (DPOAE) and automated auditory brainstem response (AABR) for neonatal hearing screening in a hospital with high delivery rate

    Get PDF
    Introduction: Congenital hearing loss is one of the commonest congenital anomalies. Neonatal hearing screening aims to detect congenital hearing loss early and provide prompt intervention for better speech and language development. The two recommended methods for neonatal hearing screening are otoacoustic emission (OAE) and automated auditory brainstem response (AABR). Objective: To study the effectiveness of distortion product otoacoustic emission (DPOAE) and automated auditory brainstem response (AABR) as first screening tool among non-risk newborns in a hospital with high delivery rate. Method: A total of 722 non-risk newborns (1444 ears) were screened with both DPOAE and AABR prior to discharge within one month. Babies who failed AABR were rescreened with AABR ± diagnostic auditory brainstem response tests within one month of age. Results: The pass rate for AABR (67.9%) was higher than DPOAE (50.1%). Both DPOAE and AABR pass rates improved significantly with increasing age (p-value<0.001). The highest pass rate for both DPOAE and AABR were between the age of 36–48 h, 73.1% and 84.2% respectively. The mean testing time for AABR (13.54 min ± 7.47) was significantly longer than DPOAE (3.52 min ± 1.87), with a p-value of <0.001. Conclusions: OAE test is faster and easier than AABR, but with higher false positive rate. The most ideal hearing screening protocol should be tailored according to different centre

    Mounding Instability and Incoherent Surface Kinetics

    Full text link
    Mounding instability in a conserved growth from vapor is analysed within the framework of adatom kinetics on the growing surface. The analysis shows that depending on the local structure on the surface, kinetics of adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent β\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    Scaling and Crossover in the Large-N Model for Growth Kinetics

    Full text link
    The dependence of the scaling properties of the structure factor on space dimensionality, range of interaction, initial and final conditions, presence or absence of a conservation law is analysed in the framework of the large-N model for growth kinetics. The variety of asymptotic behaviours is quite rich, including standard scaling, multiscaling and a mixture of the two. The different scaling properties obtained as the parameters are varied are controlled by a structure of fixed points with their domains of attraction. Crossovers arising from the competition between distinct fixed points are explicitely obtained. Temperature fluctuations below the critical temperature are not found to be irrelevant when the order parameter is conserved. The model is solved by integration of the equation of motion for the structure factor and by a renormalization group approach.Comment: 48 pages with 6 figures available upon request, plain LaTe

    Bulk dynamics for interfacial growth models

    Get PDF
    We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its interface. First, we define a {\it general bulk growth model} by means of a continuum Master equation for the evolution of the bulk density field. This general model just considers arbitrary addition of particles (though it can be easily generalized to consider substraction) with no other physical restriction. The corresponding Langevin equation for this bulk density field is derived where the influence of the bulk dynamics is explicitly shown. Finally, when it is assumed a well-defined interface for the growing cluster, the Langevin equation for the height field of this interface for some particular bulk dynamics is written. In particular, we obtain the celebrated Kardar-Parisi-Zhang (KPZ) equation. A Monte Carlo simulation illustrates the theoretical results.Comment: 6 pages, 2 figure

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    Non-Linear Stochastic Equations with Calculable Steady States

    Full text link
    We consider generalizations of the Kardar--Parisi--Zhang equation that accomodate spatial anisotropies and the coupled evolution of several fields, and focus on their symmetries and non-perturbative properties. In particular, we derive generalized fluctuation--dissipation conditions on the form of the (non-linear) equations for the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of a single height field in one dimension we give a general class of equations with exactly calculable (Gaussian and more complicated) steady states. In two dimensions, we show that any anisotropic system evolves on long time and length scales either to the usual isotropic strong coupling regime or to a linear-like fixed point associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the height field with additional order parameters which fluctuate on the growing surface. In this context, we propose phenomenological equations for the growth of a crystalline material, where the height field interacts with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case compression modes influence growth and are advected by height fluctuations, while in the second case it is the density of dislocations that couples with the height.Comment: 9 pages, revtex

    Surface Kinetics and Generation of Different Terms in a Conservative Growth Equation

    Full text link
    A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature in (1+1) dimensions is proposed to obtain a closed form of local growth equation. It can be generalized to any growth problem as long as diffusion of adatoms govern the surface morphology. The method can be easily extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation (GE) are identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the (h -> -h) symmetry breaking term and curvature dependent term are discussed. Consequence of these terms on the stable and unstable transition in (1+1) dimensions is analyzed. In (2+1) dimensions it is shown that an additional (h -> -h) symmetry breaking term is generated due to the in-plane curvature associated with the mound like structures. This term is independent of any diffusion barrier differences between in-plane and out of-plane migration. It is argued that terms generated in the presence of downward hops are the relevant terms in a GE. Growth equation in the closed form is obtained for various growth models introduced to capture most of the processes in experimental Molecular Beam Epitaxial growth. Effect of dissociation is also considered and is seen to have stabilizing effect on the growth. It is shown that for uphill current the GE approach fails to describe the growth since a given GE is not valid over the entire substrate.Comment: 14 pages, 7 figure

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure
    corecore